78 research outputs found

    Biomechanics of hearing in katydids

    Get PDF
    Animals have evolved a vast diversity of mechanisms to detect sounds. Auditory organs are used to detect intraspecific communicative signals and environmental sounds relevant to survival. To hear, terrestrial animals must convert the acoustic energy contained in the airborne sound pressure waves into neural signals. In mammals, spectral quality is assessed by the decomposition of incoming sound waves into elementary frequency components using a sophisticated cochlear system. Some neotropical insects like katydids (bushcrickets) have evolved biophysical mechanisms for auditory processing that are remarkably equivalent to those of mammals. Located on their front legs, katydid ears are small, yet are capable of performing several of the tasks usually associated with mammalian hearing. These tasks include air-to-liquid impedance conversion, signal amplification, and frequency analysis. Impedance conversion is achieved by a lever system, a mechanism functionally analogous to the mammalian middle ear ossicles, yet morphologically distinct. In katydids, the exact mechanisms supporting frequency analysis seem diverse, yet are seen to result in dispersive wave propagation phenomenologically similar to that of cochlear systems. Phylogenetically unrelated, katydids and tetrapods have evolved remarkably different structural solutions to common biophysical problems. Here, we discuss the biophysics of hearing in katydids and the variations observed across different species

    Sound Analysis and Synthesis with R

    Get PDF
    Book Revie

    Structural biomechanics determine spectral purity of bush-cricket calls

    Get PDF
    Bush-crickets (Orthoptera: Tettigoniidae) generate sound using tegminal stridulation. Signalling effectiveness is affected by the widely varying acoustic parameters of temporal pattern, frequency and spectral purity (tonality). During stridulation, frequency multiplication occurs as a scraper on one wing scrapes across a file of sclerotized teeth on the other. The frequency with which these tooth–scraper interactions occur, along with radiating wing cell resonant properties, dictates both frequency and tonality in the call. Bush-cricket species produce calls ranging from resonant, tonal calls through to non-resonant, broadband signals. The differences are believed to result from differences in file tooth arrangement and wing radiators, but a systematic test of the structural causes of broadband or tonal calls is lacking. Using phylogenetically controlled structural equation models, we show that parameters of file tooth density and file length are the best-fitting predictors of tonality across 40 bush-cricket species. Features of file morphology constrain the production of spectrally pure signals, but systematic distribution of teeth alone does not explain pure-tone sound production in this family

    Endless forms most hidden: katydids that masquerade as moss

    Get PDF
    In the cloud forests of the central range of the Colombian Andes, we discovered a species of katydid (Orthoptera: Tettigoniidae) that imitates mosses to an uncanny degree and is exceedingly difficult to detect. The camouflage exhibited by this particular katydid seems quite specific. We discuss the evolutionary consequences of this sort of specialization. Selection to maintain effective disguises can result in reproductive isolation between populations specialized for different microhabitats, which makes it reasonable to speculate that camouflage may increasing diversification rates. Camouflage could also come at the price of elevated extinction risk. This possibility must be considered because although antipredator defenses are often thought of as leading to “escape-and-radiate” dynamics where diversification follows innovation that allows expansion into new niches, recent work has shown unexpected extinction risk associated with some antipredator adaptations. Highly specialized camouflage would seem an ambiguous case because of its obvious benefits, but also potential costs such as inhabiting habitats with low carrying capacities, vulnerability to predators at high densities if predators form search images, or metabolic trade-offs with thermoregulation. Groups such as the Tettigoniidae provide a tantalizing opportunity for their exceptional diversity, wide geographic distribution, and striking array of disguises suggest that many independent evolutionary experiments have already taken place

    Lack of correlation between vertical distribution and carrier frequency, and preference for open spaces in arboreal katydids that use extreme ultrasound, in Gorgona, Colombia (Orthoptera: Tettigoniidae)

    Get PDF
    Male Tettigoniidae emit sound to attract conspecific females. The sound is produced by stridulation. During stridulation the forewings open and close, but it is during the closing stroke that the scraper contacts the file teeth to generate the predominant sound components, which are amplified by adjacent wing cells specialized in sound radiation. The sounds usually exceed the sonic boundary and might occur above 40 kHz, reaching extreme ultrasonic frequencies of 150kHz in some species. Here we test the hypothesis that Tettigoniidae species should prefer microhabitats that favour efficient signal transmission, i.e. that there is a relationship of sound frequency with the vertical distribution of the species (from ground to canopy) at Gorgona National Natural Park, Colombia. We sampled 16 trees and four different altitudinal levels between 1 and 20m above the understory vegetation. We placed collecting blankets separated by vertical distances of 5m, and knocked insects down using the technique known as fogging. We found no correlation between vertical distribution and carrier frequency, but there was a preference for open spaces (below the canopy and above the understory) in species using extreme ultrasound. This is the first quantitative description of the vertical distribution in neotropical species of the family Tettigoniidae and its relationship to the calling song frequency

    Wing mechanics, vibrational and acoustic communication in a new bush-cricket species of the genus Copiphora (Orthoptera: Tettigoniidae) from Colombia

    Get PDF
    Male bush-crickets produce acoustic signals by wing stridulation to call females. Several species also alternate vibratory signals with acoustic calls for intraspecific communication, a way to reduce risk of detection by eavesdropping predators. Both modes of communication have been documented mostly in neotropical species, for example in the genus Copiphora. In this article, we studied vibratory and acoustic signals and the biophysics of wing resonance in C. vigorosa, a new species from the rainforest of Colombia. Different from other Copiphora species in which the acoustic signals have been properly documented as pure tones, C. vigorosa males produce a complex modulated broadband call peaking at ca. 30 kHz. Such a broadband spectrum results from several wing resonances activated simultaneously during stridulation. Since males of this species do rarely sing, we also report that substratum vibrations have been adopted in this species as a persistent communication channel. Wing resonances and substratum vibrations were measured using a ÎĽ-scanning Laser Doppler Vibrometry. We found that the stridulatory areas of both wings exhibit a relatively broad-frequency response and the combined vibration outputs fits with the calling song spectrum breadth. Under laboratory conditions the calling song duty cycle is very low and males spend more time tremulating than singing

    The Auditory Mechanics of the Outer Ear of the Bush-Cricket: A Numerical Approach

    Get PDF
    Bush-crickets have tympanal ears located in the forelegs. Their ears are elaborated as they have outer, middle and inner ear components. The outer ear comprises an air-filled tube derived from the respiratory trachea, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the ear drums in the legs. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces of the tympanum (the ear drum), producing differences in sound pressure and time between the left and right sides, therefore aiding the directional hearing of the animal. It has been demonstrated experimentally that the tracheal sound transmission generates a gain of approximately 15 dB and a propagation velocity of 255 m/s, an approximately 25% reduction from free-field propagation. However the mechanism responsible for this change in sound pressure level and velocity remains elusive. In this study, we investigate the mechanical processes behind the sound pressure gain in the AT by numerically modelling the tracheal acoustic behaviour using the finite element method and real 3D geometries of the tracheae of the bush-cricket Copiphora gorgonensis. Taking into account the thermoviscous acoustic-shell interaction on the propagation of sound, we analyse the effects of the horn-shaped domain, material properties of the tracheal wall and the thermal processes on the change in sound pressure level in the AT. Through the numerical results obtained it is discerned that the tracheal geometry is the main factor contributing to the observed pressure gain

    Editorial: Evolutionary Biomechanics of Sound Production and Reception

    Get PDF
    This special issue covers various topics of acoustic communication (sound production and hearing) in animals from invertebrates to mammals primarily focusing on airborne sound but including one article on substrate-borne vibrations in webs (Miller and Mortimer). Each of the articles in this issue examines the biomechanics of the various forms of mechanisms that animals use for airborne sound production and detection (mechano-sensation). Therefore, articles are not centred on one specific topic but instead cover a range of systems that highlight recent advancements in animal bioacoustics

    Tenors not sopranos: Bio-mechanical constraints on calling song frequencies in the Mediterranean field cricket.

    Get PDF
    Male crickets and their close relatives bush-crickets (Gryllidae and Tettigoniidae, respectively; Orthoptera, Ensifera) attract distant females by producing loud calling songs. In both families, sound is produced by stridulation, the rubbing together of their forewings, whereby the plectrum of one wing is rapidly passed over a serrated file on the opposite wing. The resulting oscillations are amplified by resonating wing regions. A striking difference between Gryllids and Tettigonids lies in wing morphology and composition of song frequency: Crickets produce mostly low-frequency (2-8 kHz), pure tone signals with highly bilaterally symmetric wings, while bush-crickets use asymmetric wings for high-frequency (10-150 kHz) calls. The evolutionary reasons for this acoustic divergence are unknown. Here, we study the wings of actively stridulating male field-crickets (Gryllus bimaculatus) and present vibro-acoustic data suggesting a biophysical restriction to low-frequency song. Using laser Doppler vibrometry and brain-injections of the neuroactivator eserine to elicit singing, we recorded the topography of wing vibrations during active sound production. In freely vibrating wings, each wing region resonated differently. When wings coupled during stridulation, these differences vanished and all wing regions resonated at an identical frequency, that of the narrow-band song (~5 kHz). However, imperfections in wing-coupling caused phase shifts between both resonators, introducing destructive interference with increasing phase differences. The effect of destructive interference (amplitude reduction) was observed to be minimal at the typical low frequency calls of crickets, and by maintaining the vibration phase difference below 80°. We show that, with the imperfect coupling observed, cricket song production with two symmetric resonators becomes acoustically inefficient above ~8 kHz. This evidence reveals a bio-mechanical constraint on the production of high-frequency song whilst using two coupled resonators and provides an explanation as to why crickets, unlike bush-crickets, have not evolved to exploit ultrasonic calling songs

    A numerical approach to investigating the mechanisms behind tonotopy in the bush-cricket inner-ear

    Get PDF
    Bush-crickets (or katydids) have sophisticated and ultrasonic ears located in the tibia of their forelegs, with a working mechanism analogous to the mammalian auditory system. Their inner-ears are endowed with an easily accessible hearing organ, the crista acustica (CA), possessing a spatial organisation that allows for different frequencies to be processed at specific graded locations within the structure. Similar to the basilar membrane in the mammalian ear, the CA contains mechanosensory receptors which are activated through the frequency dependent displacement of the CA. While this tonotopical arrangement is generally attributed to the gradual stiffness and mass changes along the hearing organ, the mechanisms behind it have not been analysed in detail. In this study, we take a numerical approach to investigate this mechanism in the Copiphora gorgonensis ear. In addition, we propose and test the effect of the different vibration transmission mechanisms on the displacement of the CA. The investigation was carried out by conducting finite-element analysis on a three-dimensional, idealised geometry of the C. gorgonensis inner-ear, which was based on precise measurements. The numerical results suggested that (i) even the mildest assumptions about stiffness and mass gradients allow for tonotopy to emerge, and (ii) the loading area and location for the transmission of the acoustic vibrations play a major role in the formation of tonotopy
    • …
    corecore